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Tuple and Vector Space
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Definition

❏ A tuple is an ordered list of numbers.

❏ For example: 

1
2
32
10

is a 4-tuple (a tuple with 4 elements).

ℝ% = 1
2 ,

0.112
2
3

, 𝜋𝑒 , …

ℝ& =
17
𝜋
2

,
9
−2
2

,
1
22
2

,…



Review: Complex Numbers
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Numbers:

• Real: Nearly any number you can think of is a Real Number!

• Imaginary: When squared give a negative result.

The “unit” imaginary number (like 1 for Real Numbers) is “𝒊”, which is the square root of −1.



Review: Complex Numbers
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❏ ℂ is a plane, where number (𝑎 + 𝑏𝑖) has coordinates 
𝑎
𝑏

❏ Imaginary number: 𝑏𝑖 , 𝑏 ∈ 𝑅

❏ Conjugate of 𝑥 + 𝑦𝑖 is noted by 𝑥 + 𝑦𝑖:
o 𝑥 − 𝑦𝑖

(Complex conjugate)



Review: Complex Numbers
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❏ Arithmetic with complex numbers 𝑎 + 𝑏𝑖 :

❏ 𝑎 + 𝑏𝑖 + (𝑐 + 𝑑𝑖)

❏ (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)

❏
1234
5264

𝑎 + 𝑏𝑖
𝑐 + 𝑑𝑖

=
(𝑎 + 𝑏𝑖)(𝑐 − 𝑑𝑖)
(𝑐 + 𝑑𝑖)(𝑐 − 𝑑𝑖)

=
𝑎𝑐 + 𝑏𝑑
𝑐! + 𝑑!

+
𝑏𝑐 − 𝑎𝑑
𝑐! + 𝑑!

𝑖



❏ Length (magnitude):

q Inner Product: 

❏ Real: 

❏ Complex: 

Review: Complex Numbers
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Extra resource:

If you want to learn more about complex numbers, this video is recommended!

< 𝑥, 𝑦 > = 𝑥"𝑦" + 𝑥!𝑦! + …+ 𝑥#𝑦#

< 𝑥, 𝑦 > = 𝑥"𝑦" + 𝑥!𝑦! + …+ 𝑥#𝑦#

| 𝑎 + 𝑏𝑖 |! = 𝑎 + 𝑏𝑖 𝑎 + 𝑏𝑖 = a! + b!

Length(magnitude)

https://www.youtube.com/watch?v=cEwmlyaxLKQ


Vector Operation
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q Vector-Vector Addition

q Vector-Vector Subtraction

q Scalar-Vector Product

q Vector-Vector Products: 
o 𝒙. 𝒚 is called the inner product or dot product or scalar product of the 

vectors: 𝑥"𝑦 𝑦"𝑥
• < 𝑎, 𝑏 > < 𝑎|𝑏 > 𝑎, 𝑏 𝑎. 𝑏

o Transpose of dot product:
• 𝑎. 𝑏 $ = 𝑎$𝑏 $ = 𝑏$𝑎 = 𝑏. 𝑎 = 𝑏$𝑎

o Length of vector

Vector Operations
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q Commutativity 
o The order of the two vector arguments in the inner product does not 

matter.
𝑎"𝑏 = 𝑏"𝑎

q Distributivity with vector addition
o The inner product can be distributed across vector addition.

𝑎 + 𝑏 '𝑐 = 𝑎'𝑐 + 𝑏'𝑐
𝑎'(𝑏 + 𝑐) = 𝑎'𝑏 + 𝑎'𝑐

Dot Product Properties
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q Bilinear (linear in both a and b)

𝑎> 𝜆𝑏 + 𝛽𝑐 = 𝜆𝑎>𝑏 + 𝛽𝑎>𝑐

q Positive Definite:
𝑎. 𝑎 = 𝑎/𝑎 ≥ 0

o 0 only if a itself is a zero vector𝑎 = 𝟎

Dot Product Properties
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q Associative
• Note: the associative law is that parentheses can be moved around, 

e.g., (x+y)+z = x+(y+z) and x(yz) = (xy)z

1) Associative property of the vector dot product with a scalar (scalar-
vector multiplication embedded inside the dot product)

= 𝛾𝒖 >𝒗 = 𝛾𝒖𝑻𝒗

Dot Product Properties
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scalar

13



q Associative

2) Does vector dot product obey the associative property?

Dot Product Properties
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vector-scalar product
row vector

scalar-vector product
column vector

14



q The cross product is defined only for two 3-element vectors, and 
the result is another 3-element vector. It is commonly indicated 
using a multiplication symbol (×).

q It used often in geometry, for example to create a vector c that is orthogonal 
to the plane spanned by vectors a and b. It is also used in vector and 
multivariate calculus to compute surface integrals.

Cross product
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q Vector-Vector Products: 
o Given two vectors 𝑥 ∈ 𝑅#, 𝑦 ∈ 𝑅$:

• 𝑥 ⊗ 𝑦 = 𝑥𝑦! ∈ 𝑅"×$ is called the outer product of the vectors:  𝑥𝑦! %& =
𝑥%𝑦&

Vector Operations
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Example

❏ Represent 𝐴 ∈ 𝑅!×# with outer product of two vectors:

16



q Properties:

o 𝑢 ⊗ 𝑣 > = (𝑣 ⊗u)

o 𝑣 + 𝑤 ⊗ 𝑢 = 𝑣 ⊗ 𝑢 + 𝑤⊗ 𝑢
o 𝑢 ⊗ 𝑣 + 𝑤 = 𝑢⊗ 𝑣 + 𝑢 ⊗𝑤
o 𝑐 𝑣 ⊗ 𝑢 = 𝑐𝑣 ⊗ 𝑢 = 𝑣 ⊗ 𝑐𝑢
o 𝑢. 𝑣 = 𝑡𝑟𝑎𝑐𝑒 𝑢⨂𝑣 (𝑢, 𝑣 𝜖𝑅@)
o 𝑢 ⊗ 𝑣 𝑤 = 𝑣.𝑤 𝑢

Outer Product Properties
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q Vector-Vector Products: 
o Hadamard
o Element-wise product

𝑐 = 𝑎 ⨀𝑏 =

𝑎$𝑏$
𝑎%𝑏%.
.

𝑎#𝑏#

q Hadamard product is used in image compression techniques such as JPEG. It is 
also known as Schur product

q Hadamard Product is used in LSTM (Long Short-Term Memory) cells of 
Recurrent Neural Networks (RNNs).

Vector Operations
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q Properties:

o 𝑎⨀𝑏 = 𝑏⨀𝑎
o 𝑎⨀ 𝑏⨀𝑐 = 𝑎⨀𝑏 ⨀𝑐
o 𝑎⨀ 𝑏 + 𝑐 = 𝑎⨀𝑏 + 𝑎⨀𝑐
o 𝜃𝑎 ⨀𝑏 = 𝑎⨀ 𝜃𝑏 = 𝜃 𝑎⨀𝑏
o 𝑎⨀𝟎 = 𝟎⊙ 𝑎 = 𝟎

Hadamard Product Properties
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Binary Operation
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Binary Operations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 21

Definition

❏ Any function from  A x A → A   is a binary operation.

❏ Closure Law: 

❏ A set is said to be closure under an operation (like addition, 
subtraction, multiplication, etc.) if that operation is performed on 
elements of that set and result also lies in set.

𝑖𝑓 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 → 𝑎 ∗ 𝑏 ∈ 𝐴



Binary Operations
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Example

❏ Is “+” a binary operator on natural numbers?
❏ Is “x” a binary operator on natural numbers?
❏ Is “-” a binary operator on natural numbers?
❏ Is “/” a binary operator on natural numbers?



Field
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q A group 𝐺 is a pair (𝑆,∘), where 𝑆 is a set and ∘ is a binary operation on 
𝑆 such that:

q ∘ is associative

q (Identity) There exists an element e ∈ 𝑆 such that:

𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 ∀𝑎 ∈ 𝑆

q (Inverses) For every 𝑎 ∈ 𝑆 there is b ∈ 𝑆 such that: 

If ∘ is commutative, then G is called a commutative group!

Groups
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Definition

𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑒



Fields
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Definition

❏ A field F is a set together with two binary operations + and *, satisfying the 
following properties:

1. (F,+) is a commutative group

2. (F-{0},*) is a commutative group

3. The distributive law holds in F:

● Associative
● Identity
● Inverses
● Commutative

𝑎 + 𝑏 ∗ 𝑐 = 𝑎 ∗ 𝑐 + (𝑏 ∗ 𝑐)
𝑎 ∗ 𝑏 + 𝑐 = 𝑎 ∗ 𝑏 + (𝑎 ∗ 𝑐)



q A field in mathematics is a set of things of elements (not necessarily 
numbers) for which the basic arithmetic operations (addition, subtraction, 
multiplication, division) are defined: (F,+,.)

q Field is a set (F) with two binary operations (+ , .) satisfying following 
properties:

Fields
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Example

(R; +, .) and (Q; +, .) serve as examples of fields.



Fields
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Properties Binary Operations
Addition (+) Multiplication (.)

Closure 𝑎∃ )ندوب هتسب( + 𝑏 ∈ 𝐹 ∃𝑎. 𝑏 ∈ 𝐹
Associative )یریذپ تکرش( 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 𝑎. (𝑏. 𝑐) = (𝑎. 𝑏). 𝑐

Commutative  
( یریذپ ییاج هباج )

𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎. 𝑏 = 𝑏. 𝑎

Existence of identity
e ∈ 𝐹

𝑎 + 𝑒 = 𝑎 = 𝑒 + 𝑎 𝑎. 𝑒 = 𝑎 = 𝑒. 𝑎

Existence of inverse: For each 𝑎 in F 
there must exist 𝑏! in 𝐹

𝑎 + 𝑏 = 𝑒 = 𝑏 + 𝑎 𝑎. 𝑏 = 𝑒 = 𝑏. 𝑎
F𝑜𝑟 𝑎𝑛𝑦 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑎

Multiplication is distributive over addition
𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐
(𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐



Fields
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Example

Set 𝐵 = {0,1} under following operations is a field?



Fields
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Example

Which are fields? (two binary operations + , *)

ℝ
ℂ
ℚ
ℤ
𝑊
ℕ
ℝ%×%



Vector Space
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q Building blocks of linear algebra.

q A non-empty set V with field F (most of time R or C) forms a 
vector space with two operations:

1. + : Binary operation on V which is V x V → V
2. .  : F x V → V 

Vector Space
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Note

In our course, by default, field is R (real numbers).



Vector Space
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Definition

A vector space over a field F is the set V equipped with two operations: (𝑉, 𝐹, +, . )

i. Vector addition: denoted by “+” adds two elements 𝑥, 𝑦 ∈ 𝑉 to produce
another element 𝑥 + 𝑦 ∈ 𝑉

ii. Scalar multiplication: denoted by “.” multiplies a vector       
with a scalar             to produce another vector             .  We usually omit the 
“.” and simply write this vector as       

𝑥 ∈ 𝑉
𝛼 ∈ 𝐹 𝛼. 𝑥 ∈ 𝑉

𝛼𝑥



q Addition of vector space (𝑥 + 𝑦)

q Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀𝑥, 𝑦 ∈ 𝑉

q Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑉

q Additive identity ∃𝟎 ∈ 𝑉 such that 𝑥 + 𝟎 = 𝑥, ∀𝑥 ∈ 𝑉

q Additive inverse ∃(−𝑥) ∈ 𝑉 such that 𝑥 + (−𝑥) = 0, ∀𝑥 ∈ 𝑉

Vector Space Properties
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q Action of the scalars field on the vector space  (𝛼𝑥)

q Associative      𝛼 𝛽𝑥 = 𝛼𝛽 𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉

q Distributive over    ……

scalar addition:     𝛼 + 𝛽 𝑥 = 𝛼𝑥 + 𝛽𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉
vector addition:    𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦 ∀𝛼 ∈ 𝐹; ∀𝑥, 𝑦 ∈ 𝑉

q Scalar identity 1𝑥 = 𝑥 ∀𝑥 ∈ 𝑉

Vector Space Properties
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Vector Space
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Example

Let V be the set of all real numbers with the operations                           , ⊕ is 
an ordinary subtraction) and                       (     is an ordinary multiplication). 
Is V a vector space? If it’s not, which properties fail to hold?

𝑢 ⊕ 𝑣 = 𝑢 − 𝑣
𝑐 ⊡ 𝑢 = 𝑐𝑢 ⊡



Vector Space
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Example: Fields are R in this example:

- The n-tuple space, 
- The space of m x n matrices
- The space of functions:

(f + g)(x) = f(x) + g(x)     and    (cf)(x) = cf(x)

f(t) = 1 + sin(2t) and  g(t) = 2 + 0.5t

- The space of polynomial functions over a field f(x):

𝑝$ 𝑡 = 𝑎% + 𝑎&𝑡 + 𝑎!𝑡! + …+ 𝑎$𝑡$



q Function addition and scalar multiplication

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) 𝑎𝑛𝑑 (𝑎𝑓)(𝑥) = 𝑎𝑓(𝑥)

Vector Space of functions
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Example

- Set of all polynomials with real coefficients

- Set of all real-valued continuous function on [0,1]

- Set of all real-valued function that are differentiable on [0,1]

Non-empty set X and any field F                              𝐹" = {𝑓: 𝑋 → 𝐹}



𝑃! (ℝ): Polynomials with max degree (n)

q Vector addition

q Scalar multiplication

q And other 8 properties!

Vector Space of polynomials
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Vector Space
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Example

Which are vector spaces?

q Set ℝ/ over ℝ
q Set ℂ over ℝ
q Set ℝ over ℂ
q Set ℤ over ℝ
q Set of all polynomials with coefficient from ℝ over ℝ
q Set of all polynomials of degree at most 𝑛 with coefficient from ℝ over ℝ
q Matrix: 𝑀0,/(ℝ) over ℝ
q Function: 𝑓 𝑥 : 𝑥 ⟶ ℝ over ℝ



The operations on field F are:

q + : F x F → F
q x : F x F → F

The operations on a vector space V over a field F are:

q + : V x V → V
q . : F x V → V

Conclusion
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Linear Combination
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q The linear combinations of 𝑚 vectors 𝑎2, … 𝑎0 , each with size 
𝑛 is:

𝛽2𝑎2 +⋯+ 𝛽0𝑎0
where 𝛽2, … , 𝛽0 are scalars and called the coefficients of the 
linear combination

q Coordinates: We can write any n-vector b as a linear 
combination of the standard unit vectors, as:

𝑏 = 𝑏2𝑒2 +⋯+ 𝑏/𝑒/
o Example: What are the coefficients and combination for this vector?  

Linear Combinations
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Linear Combinations
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Special Linear Combinations

q Sum of vectors

q Average of vectors



Span – Linear Hull
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Span or linear hull
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Definition

If 𝑣2, 𝑣%, 𝑣&, … , 𝑣3 are inℝ/, then the set of all linear combinations 

of 𝑣2 , 𝑣%, … , 𝑣3 is denoted by Span {𝑣2 , 𝑣%, … , 𝑣3 } and is called the 

subset of  ℝ𝒏 spanned (or generated) by 𝑣2 , 𝑣%, … , 𝑣3.

That is, Span{𝑣2 , 𝑣%, … , 𝑣3} is the collection of all vectors that can be 

written in the form:

𝑐2𝑣2 + 𝑐%𝑣% + …+ 𝑐3𝑣3

with 𝑐2, 𝑐%, … , 𝑐3 being scalars.



v and u are non-zero vectors in       where v is not a multiple of u

Span Geometry
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ℝ'



Span Geometry
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Span or linear hull
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Example

❏ Is vector b in Span {𝑣Z , 𝑣[, … , 𝑣\}
❏ Is vector 𝑣& in Span {𝑣Z , 𝑣[, … , 𝑣\}

❏ Is vector 0 in Span {𝑣Z , 𝑣[, … , 𝑣\}
❏ Span of polynomials: {(1 + 𝑥), (1 − 𝑥), 𝑥%}?
❏ Is b in Span {𝑎2, 𝑎%} ?

𝑎2 =
1
−2
3

, 𝑎% =
5
−13
−3

, 𝑏 =
−3
8
1



q Vector-Vector Operations

q Binary operations

q Field 

q Vector space

q Linear combination and introduction to affine combination

q Span of vectors (linear hull)

Conclusion
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q LINEAR ALGEBRA: Theory, Intuition, Code
q LINEAR ALGEBRA, KENNETH HOFFMAN. 
q LINEAR ALGEBRA, Jim Hefferon
q David C. Lay, Linear Algebra and Its Applications
q Online Courses!
q Chapter 4 of Elementary Linear Algebra with Applications
q Chapter 3 of Applied Linear Algebra and Matrix Analysis
q https://www.math.tamu.edu/~yvorobet/MATH433-2010B/Lect2-

06web.pdf
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