## Vector Space

## Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

## Overview

## Review Complex Numbers

## Operations

Field

## Vector Space

## Linear Combination

Span - Linear Hull

## Complex Number Review

## Tuple and Vector Space

## Definition

$\square$ A tuple is an ordered list of numbers.
$\square$ For example: $\left[\begin{array}{c}1 \\ 2 \\ 32 \\ 10\end{array}\right]$ is a 4-tuple (a tuple with 4 elements).

$$
\begin{aligned}
& \mathbb{R}^{2}=\left\{\binom{1}{2},\binom{0.112}{\frac{2}{3}},\binom{\pi}{e}, \ldots\right\} \\
& \mathbb{R}^{3}=\left\{\left(\begin{array}{c}
17 \\
\pi \\
2
\end{array}\right),\left(\begin{array}{c}
9 \\
-2 \\
\sqrt{2}
\end{array}\right),\left(\begin{array}{c}
1 \\
22 \\
2
\end{array}\right), \ldots\right\}
\end{aligned}
$$



## Review: Complex Numbers

Numbers:

- Real: Nearly any number you can think of is a Real Number!

| 1 | 12.38 | -0.8625 | $3 / 4$ | $\sqrt{ } 2$ | 1998 |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Imaginary: When squared give a negative result.

The "unit" imaginary number (like 1 for Real Numbers) is " $i$ ", which is the square root of -1 .

Examples of Imaginary Numbers:

| 3 i | 1.04 i | -2.8 i | $3 \mathrm{i} / 4$ | $(\sqrt{ } 2) \mathrm{i}$ | 1998 i |
| :--- | :--- | :--- | :--- | :--- | :--- |

And we keep that little " $i$ " there to remind us we need to multiply by $\sqrt{ }-1$

- $\mathbb{C}$ is a plane, where number $(a+b i)$ has coordinates $\left[\begin{array}{l}a \\ b\end{array}\right]$
- Imaginary number: $b i, b \in R$
- Conjugate of $x+y i$ is noted by $\overline{x+y i}$ :
- $x-y i$


- Arithmetic with complex numbers $(a+b i)$ :

$$
\begin{gathered}
\quad(a+b i)+(c+d i) \\
-\frac{a+b i}{c+d i} \\
\frac{a+b i}{c+d i}=\frac{(a+b i)(c+d i)}{(c+d i)(c-d i)}=\frac{a c+b d}{c^{2}+d^{2}}+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
\end{gathered}
$$

- Length (magnitude): $\quad\|a+b i\|^{2}=\overline{(a+b i)}(a+b i)=\mathrm{a}^{2}+\mathrm{b}^{2}$
a Inner Product:
- Real: $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$
- Complex: $\langle x, y\rangle=\overline{x_{1}} y_{1}+\overline{x_{2}} y_{2}+\ldots+\overline{x_{n}} y_{n}$



## Extra resource:

If you want to learn more about complex numbers, this video is recommended!

## Vector Operation

## Vector Operations

- Vector-Vector Addition
- Vector-Vector Subtraction
- Scalar-Vector Product
- Vector-Vector Products:
- $\boldsymbol{x} . \boldsymbol{y}$ is called the inner product or dot product or scalar product of the vectors: $x^{T} y\left(y^{T} x\right)$

$$
\text { - }\langle a, b\rangle \quad<a|b\rangle \quad(a, b) \quad a . b
$$

- Transpose of dot product:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i} .
$$

- $(a . b)^{T}=\left(a^{T} b\right)^{T}=\left(b^{T} a\right)=(b . a)=b^{T} a$
- Length of vector
- Commutativity
- The order of the two vector arguments in the inner product does not matter.

$$
a^{T} b=b^{T} a
$$

- Distributivity with vector addition
- The inner product can be distributed across vector addition.

$$
\begin{aligned}
& (a+b)^{T} c=a^{T} c+b^{T} c \\
& a^{T}(b+c)=a^{T} b+a^{T} c
\end{aligned}
$$

- Bilinear (linear in both a and b)

$$
a^{T}(\lambda b+\beta c)=\lambda a^{T} b+\beta a^{T} c
$$

- Positive Definite:

$$
(a . a)=a^{T} a \geq 0
$$

- 0 only if a itself is a zero vectora $=\mathbf{0}$
- Associative
- Note: the associative law is that parentheses can be moved around, e.g., $(x+y)+z=x+(y+z)$ and $x(y z)=(x y) z$

1) Associative property of the vector dot product with a scalar (scalarvector multiplication embedded inside the dot product)

$$
\begin{aligned}
& { }_{\text {scalar }}^{\searrow \gamma}\left(\mathbf{u}^{\mathrm{T}} \mathbf{v}\right)=\left(\gamma \mathbf{u}^{\mathrm{T}}\right) \mathbf{v}=\mathbf{u}^{\mathrm{T}}(\gamma \mathbf{v})=\left(\mathbf{u}^{\mathrm{T}} \mathbf{v}\right) \gamma \\
& =(\gamma \boldsymbol{u})^{T} \boldsymbol{v}=\gamma \boldsymbol{u}^{\boldsymbol{T}} \boldsymbol{v}
\end{aligned}
$$

- Associative

2) Does vector dot product obey the associative property?


- The cross product is defined only for two 3-element vectors, and the result is another 3 -element vector. It is commonly indicated using a multiplication symbol ( $\times$ ).

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \left(\theta_{a b}\right) \quad \mathbf{a} \times \mathbf{b}=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

- It used often in geometry, for example to create a vector c that is orthogonal to the plane spanned by vectors $a$ and $b$. It is also used in vector and multivariate calculus to compute surface integrals.


## Vector Operations

- Vector-Vector Products:
- Given two vectors $x \in R^{m}, y \in R^{n}$ :
- $x \otimes y=x y^{T} \in R^{m \times n}$ is called the outer product of the vectors: $\left(x y^{T}\right)_{i j}=$

$$
\begin{aligned}
& x_{i} y_{j} \\
& x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right], ~
\end{aligned}
$$

## Example

- Represent $A \in R^{m \times n}$ with outer product of two vectors:

$$
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x & x & \cdots & x \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} & x_{1} & \cdots & x_{1} \\
x_{2} & x_{2} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} & x_{m} & \cdots & x_{m}
\end{array}\right]
$$

- Properties:
- $(u \otimes v)^{T}=(v \otimes u)$
- $(v+w) \otimes u=v \otimes u+w \otimes u$
- $u \otimes(v+w)=u \otimes v+u \otimes w$
- $c(v \otimes u)=(c v) \otimes u=v \otimes(c u)$
- $(u . v)=\operatorname{trace}(u \otimes v)\left(u, v \in R^{n}\right)$
- $(u \otimes v) w=(v . w) u$


## Vector Operations

- Vector-Vector Products:
- Hadamard
- Element-wise product

$$
c=a \odot b=\left[\begin{array}{c}
a_{1} b_{1} \\
a_{2} b_{2} \\
\cdot \\
a_{n} b_{n}
\end{array}\right]
$$

- Hadamard product is used in image compression techniques such as JPEG. It is also known as Schur product
- Hadamard Product is used in LSTM (Long Short-Term Memory) cells of Recurrent Neural Networks (RNNs).
- Properties:
- $a \odot b=b \odot a$
- $a \odot(b \odot c)=(a \odot b) \odot c$
- $a \odot(b+c)=a \odot b+a \odot c$
- $(\theta a) \odot b=a \odot(\theta b)=\theta(a \odot b)$
- $a \odot \mathbf{0}=\mathbf{0} \odot a=\mathbf{0}$


## Binary Operation

## Definition

- Any function from $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ is a binary operation.
- Closure Law:
- A set is said to be closure under an operation (like addition, subtraction, multiplication, etc.) if that operation is performed on elements of that set and result also lies in set.

$$
\text { if } a \in A, b \in A \rightarrow a * b \in A
$$

## Binary Operations

## Example

- Is "+" a binary operator on natural numbers?
- Is " $x$ " a binary operator on natural numbers?
- Is "-" a binary operator on natural numbers?
- Is "/" a binary operator on natural numbers?


## Field

## Definition

- A group $G$ is a pair $(S, \circ)$, where $S$ is a set and $\circ$ is a binary operation on $S$ such that:
- $\circ$ is associative
- (Identity) There exists an element e $\in S$ such that:

$$
e \circ a=a \circ e=a \quad \forall a \in S
$$

- (Inverses) For every $a \in S$ there is $\mathrm{b} \in S$ such that:

$$
a \circ b=b \circ a=e
$$

If $\circ$ is commutative, then $G$ is called a commutative group!

## Definition

- A field F is a set together with two binary operations + and *, satisfying the following properties:

1. $(F,+)$ is a commutative group $\begin{cases}0 & \text { Associative } \\ : & \text { Identity } \\ : & \text { Inverses } \\ \text { Commutative }\end{cases}$
2. ( $\mathrm{F}-\{0\}, *$ ) is a commutative group
3. The distributive law holds in F:

$$
\begin{aligned}
& (a+b) * c=(a * c)+(b * c) \\
& a *(b+c)=(a * b)+(a * c)
\end{aligned}
$$

- A field in mathematics is a set of things of elements (not necessarily numbers) for which the basic arithmetic operations (addition, subtraction, multiplication, division) are defined: (F,+,.)


## Example

$(R ;+,$.$) and ( Q ;+,$.$) serve as examples of fields.$

- Field is a set (F) with two binary operations (+ , .) satisfying following properties:

Fields

## $\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in \boldsymbol{F}$

| Properties | Binary Operations |  |
| :---: | :---: | :---: |
|  | Addition (+) | Multiplication (.) |
| Closure (بسته بودن) | $\exists a+b \in F$ | $\exists a . b \in F$ |
| Associative (شركتپ) | $a+(b+c)=(a+b)+c$ | $a .(b . c)=(a . b) . c$ |
| Commutative (جابهجایییذیی) | $a+b=b+a$ | $a . b=b . a$ |
| Existence of identity e $\in F$ | $a+e=a=e+a$ | $a . e=a=e . a$ |
| Existence of inverse: For each $a$ in F there must exist $b_{1}$ in $F$ | $a+b=e=b+a$ | $a . b=e=b . a$ <br> For any nonzero a |
| Multiplication is distributive over addition$\begin{aligned} & a \cdot(b+c)=a \cdot b+a \cdot c \\ & (a+b) \cdot c=a \cdot c+b \cdot c \end{aligned}$ |  |  |

Fields

## Example

Set $B=\{0,1\}$ under following operations is a field?



Fields

## Example

Which are fields? (two binary operations + , *)
$\mathbb{R}$
$\mathbb{C}$
$\mathbb{Q}$
$\mathbb{Z}$
$W$
$\mathbb{N}$
$\mathbb{R}^{2 \times 2}$


## Vector Space

- Building blocks of linear algebra.
- A non-empty set V with field F (most of time R or C ) forms a vector space with two operations:

1.     + : Binary operation on $V$ which is $V \times V \rightarrow V$
2. $: ~ F \times V \rightarrow V$

## Note

In our course, by default, field is $\mathbf{R}$ (real numbers).

## Vector Space

## Definition

A vector space over a field F is the set V equipped with two operations: $(V, F,+,$.
i. Vector addition: denoted by "+" adds two elements $x, y \in V$ to produce another element $x+y \in V$
ii. Scalar multiplication: denoted by "." multiplies a vector $x \in V$ with a scalar $\alpha \in F$ to produce another vector $\alpha . x \in V$. We usually omit the "." and simply write this vector as $\alpha x$

- Addition of vector space $(x+y)$
- Commutative

$$
x+y=y+x \forall x, y \in V
$$

- Associative

$$
(x+y)+z=x+(y+z) \forall x, y, z \in V
$$

- Additive identity $\exists \mathbf{0} \in V$ such that $x+\mathbf{0}=x, \forall x \in V$
- Additive inverse $\exists(-x) \in V$ such that $x+(-x)=0, \forall x \in V$


## Vector Space Properties

- Action of the scalars field on the vector space ( $\alpha x$ )
- Associative

$$
\alpha(\beta x)=(\alpha \beta) x
$$

$$
\forall \alpha, \beta \in F ; \forall x \in V
$$

- Distributive over

$$
\begin{array}{lll}
\text { scalar addition: } & (\alpha+\beta) x=\alpha x+\beta x & \forall \alpha, \beta \in F ; \forall x \in V \\
\text { vector addition: } & \alpha(x+y)=\alpha x+\alpha y & \forall \alpha \in F ; \forall x, y \in V
\end{array}
$$

- Scalar identity

$$
1 x=x
$$

$$
\forall x \in V
$$

## Vector Space

## Example

Let V be the set of all real numbers with the operations $\quad u \oplus v=u-v, \oplus$ is an ordinary subtraction) and $c \boxtimes u=c u$ ( $\square$ is an ordinary multiplication). Is V a vector space? If it's not, which properties fail to hold?

## Vector Space

## Example: Fields are R in this example:

- The n-tuple space,
- The space of $m \times n$ matrices
- The space of functions:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \quad \text { and } \quad(c f)(x)=c f(x) \\
& f(t)=1+\sin (2 t) \quad \text { and } g(t)=2+0.5 t
\end{aligned}
$$

- The space of polynomial functions over a field $\mathrm{f}(\mathrm{x})$ :

$$
p_{n}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}
$$

- Function addition and scalar multiplication

$$
(f+g)(x)=f(x)+g(x) \quad \text { and }(a f)(x)=a f(x)
$$

Non-empty set $X$ and any field $F$ $\qquad$ $\rightarrow \quad F^{x}=\{f: X \rightarrow F\}$

## Example

- Set of all polynomials with real coefficients
- Set of all real-valued continuous function on [0,1]
- Set of all real-valued function that are differentiable on $[0,1]$
$P_{n}(\mathbb{R})$ : Polynomials with max degree ( n )
- Vector addition
- Scalar multiplication
- And other 8 properties!


## Vector Space

## Example

Which are vector spaces?
$\square$ Set $\mathbb{R}^{n}$ over $\mathbb{R}$
$\square$ Set $\mathbb{C}$ over $\mathbb{R}$
$\square$ Set $\mathbb{R}$ over $\mathbb{C}$
$\square$ Set $\mathbb{Z}$ over $\mathbb{R}$
$\square$ Set of all polynomials with coefficient from $\mathbb{R}$ over $\mathbb{R}$
$\square$ Set of all polynomials of degree at most $n$ with coefficient from $\mathbb{R}$ over $\mathbb{R}$
$\square$ Matrix: $M_{m, n}(\mathbb{R})$ over $\mathbb{R}$
$\square$ Function: $f(x): x \rightarrow \mathbb{R}$ over $\mathbb{R}$

The operations on field $F$ are:

- $+: F \times F \rightarrow F$
- $x: F \times F \rightarrow F$

The operations on a vector space V over a field F are:
口 $+: V x V \rightarrow V$

- . : $\mathrm{F} \times \mathrm{V} \rightarrow \mathrm{V}$


## Linear Combination

- The linear combinations of $m$ vectors $a_{1}, \ldots a_{m}$, each with size $n$ is:

$$
\beta_{1} a_{1}+\cdots+\beta_{m} a_{m}
$$

where $\beta_{1}, \ldots, \beta_{m}$ are scalars and called the coefficients of the linear combination

- Coordinates: We can write any $n$-vector $b$ as a linear combination of the standard unit vectors, as:

$$
b=b_{1} e_{1}+\cdots+b_{n} e_{n}
$$

- Example: What are the coefficients and combination for this vector?

$$
\left[\begin{array}{c}
-1 \\
3 \\
5
\end{array}\right]
$$




Left. Two 2-vectors $a_{1}$ and $a_{2}$. Right. The linear combination $b=0.75 a_{1}+1.5 a_{2}$

## Special Linear Combinations

- Sum of vectors
- Average of vectors


## Span - Linear Hull

## Definition

If $v_{1}, v_{2}, v_{3}, \ldots, v_{p}$ are in $\mathbb{R}^{n}$, then the set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$ is denoted by $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and is called the subset of $\mathbb{R}^{\boldsymbol{n}}$ spanned (or generated) by $v_{1}, v_{2}, \ldots, v_{p}$.

That is, $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the collection of all vectors that can be written in the form:

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}
$$

with $c_{1}, c_{2}, \ldots, c_{p}$ being scalars.
$v$ and $u$ are non-zero vectors in $\mathbb{R}^{3}$ where $v$ is not a multiple of $u$

$\operatorname{Span}\{\mathbf{v}\}$ as a
line through the origin.


Span $\{\mathbf{u}, \mathbf{v}\}$ as a plane through the origin.

(a) $\operatorname{Span}(\{\bar{A}, \bar{B}\})=\operatorname{Span}(\{\bar{A}, \bar{B}, \bar{C}\})$
$\operatorname{Span}(\{\bar{A}, \bar{B}, \bar{C}\})=$ All vectors on hyperplane
(b) $\operatorname{Span}(\{\bar{A}, \bar{B}\}) \neq \operatorname{Span}(\{\bar{A}, \bar{B}, \bar{C}\})$ $\operatorname{Span}(\{\bar{A}, \bar{B}, \bar{C}\})=$ All vectors in $\mathcal{R}^{3}$

Figure 2.6: The span of a set of linearly dependent vectors has lower dimension than the number of vectors in the set

## Example

- Is vector b in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$
$\square$ Is vector $v_{3}$ in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$
$\square$ Is vector 0 in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$
Span of polynomials: $\left\{(1+x),(1-x), x^{2}\right\}$ ?
$\square$ Is b in Span $\left\{a_{1}, a_{2}\right\}$ ?

$$
a_{1}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right], a_{2}=\left[\begin{array}{c}
5 \\
-13 \\
-3
\end{array}\right], b=\left[\begin{array}{c}
-3 \\
8 \\
1
\end{array}\right]
$$

- Vector-Vector Operations
- Binary operations
- Field
- Vector space
- Linear combination and introduction to affine combination
- Span of vectors (linear hull)
- LINEAR ALGEBRA: Theory, Intuition, Code
- LINEAR ALGEBRA, KENNETH HOFFMAN.
- LINEAR ALGEBRA, Jim Hefferon
- David C. Lay, Linear Algebra and Its Applications
- Online Courses!
- Chapter 4 of Elementary Linear Algebra with Applications
- Chapter 3 of Applied Linear Algebra and Matrix Analysis
- https://www.math.tamu.edu/~yvorobet/MATH433-2010B/Lect206web.pdf

