

Vector Space

Linear Algebra

Department of Computer Engineering Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Complex Number Review

Tuple and Vector Space

Δ

Definition

□ A tuple is an ordered list of numbers. □ For example: $\begin{bmatrix} 1\\2\\32\\10 \end{bmatrix}$ is a 4-tuple (a tuple with 4 elements).

$$\mathbb{R}^{2} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0.112 \\ \frac{2}{3} \end{pmatrix}, \begin{pmatrix} \pi \\ e \end{pmatrix}, \dots \right\}$$
$$\mathbb{R}^{3} = \left\{ \begin{pmatrix} 17 \\ \pi \\ 2 \end{pmatrix}, \begin{pmatrix} 9 \\ -2 \\ \sqrt{2} \end{pmatrix}, \begin{pmatrix} 1 \\ 22 \\ 2 \end{pmatrix}, \dots \right\}$$

Hamid R. Rabiee & Maryam Ramezani

Numbers:

• Real: Nearly any number you can think of is a Real Number!

 1
 12.38
 −0.8625
 3/4
 √2
 1998

Imaginary: When squared give a negative result.

The "unit" imaginary number (like 1 for Real Numbers) is "i", which is the square root of -1.

Examples of Imaginary Numbers: 3i 1.04i -2.8i 3i/4 $(\sqrt{2})i$ 1998i And we keep that little "i" there to remind us we need to multiply by $\sqrt{-1}$

Review: Complex Numbers

□ ℂ is a plane, where number (a + bi) has coordinates $\begin{bmatrix} a \\ b \end{bmatrix}$ □ Imaginary number: bi, $b \in R$

 \Box Conjugate of x + yi is noted by $\overline{x + yi}$:

□ Arithmetic with complex numbers (a + bi):

$$\Box (a+bi) + (c+di)$$

$$\Box (a+bi)(c+di)$$

$$\Box \frac{a+bi}{c+di}$$

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i$$

Review: Complex Numbers

□ Length (magnitude): $||a + bi||^2 = \overline{(a + bi)}(a + bi) = a^2 + b^2$

Q Real: $< x, y > = x_1y_1 + x_2y_2 + ... + x_ny_n$

$$\Box \quad \text{Complex:} \quad < x, y > = \overline{x_1}y_1 + \overline{x_2}y_2 + \dots + \overline{x_n}y_n$$

Extra resource:

If you want to learn more about complex numbers, this video is recommended!

Vector Operation

Vector Operations

- Vector-Vector Addition
- Vector-Vector Subtraction
- Scalar-Vector Product
- Vector-Vector Products:
 - x. y is called the inner product or dot product or scalar product of the vectors: $x^T y (y^T x)$

$$x^{T}y \in \mathbb{R} = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i}y_{i}.$$

- Transpose of dot product:
 - $(a.b)^T = (a^Tb)^T = (b^Ta) = (b.a) = b^Ta$
- \circ Length of vector

Commutativity

 $_{\odot}$ $\,$ The order of the two vector arguments in the inner product does not matter.

$$a^T b = b^T a$$

Distributivity with vector addition

• The inner product can be distributed across vector addition.

$$(a+b)^T c = a^T c + b^T c$$

$$a^T (b+c) = a^T b + a^T c$$

Bilinear (linear in both a and b)

$$a^{T}(\lambda b + \beta c) = \lambda a^{T}b + \beta a^{T}c$$

□ Positive Definite: $(a.a) = a^T a \ge 0$ $_{\circ}$ 0 only if a itself is a zero vector a = 0

□ Associative

 Note: the associative law is that parentheses can be moved around, e.g., (x+y)+z = x+(y+z) and x(yz) = (xy)z

1) Associative property of the vector dot product with a scalar (scalar-vector multiplication embedded inside the dot product)

scalar
$$\checkmark \gamma(\mathbf{u}^{\mathrm{T}}\mathbf{v}) = (\gamma \mathbf{u}^{\mathrm{T}})\mathbf{v} = \mathbf{u}^{\mathrm{T}}(\gamma \mathbf{v}) = (\mathbf{u}^{\mathrm{T}}\mathbf{v})\gamma$$
$$= (\gamma \mathbf{u})^{T}\mathbf{v} = \gamma \mathbf{u}^{T}\mathbf{v}$$

□ Associative

2) Does vector dot product obey the associative property?

The cross product is defined only for two 3-element vectors, and the result is another 3-element vector. It is commonly indicated using a multiplication symbol (\times) .

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta_{ab}) \qquad \mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2\\ a_3b_1 - a_1b_3\\ a_1b_2 - a_2b_1 \end{bmatrix}$$

It used often in geometry, for example to create a vector c that is orthogonal to the plane spanned by vectors a and b. It is also used in vector and multivariate calculus to compute surface integrals. axb

Hamid R. Rabiee & Maryam Ramezani

Vector Operations

□ Vector-Vector Products:

- Given two vectors $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$:
 - $x \otimes y = xy^T \in \mathbb{R}^{m \times n}$ is called the outer product of the vectors: $(xy^T)_{ij} =$

$$\begin{array}{c} \mathbf{x}_{i}\mathbf{y}_{j} \\ xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Example

□ Represent $A \in \mathbb{R}^{m \times n}$ with outer product of two vectors: $A = \begin{bmatrix} | & | & | \\ x & x & \cdots & x \\ | & | & | \end{bmatrix} = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 \\ x_2 & x_2 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m & \cdots & x_m \end{bmatrix}$

Hamid R. Rabiee & Maryam Ramezani

□ Properties:

$$\begin{array}{l} \circ \quad (u \otimes v)^{T} = (v \otimes u) \\ \circ \quad (v+w) \otimes u = v \otimes u + w \otimes u \\ \circ \quad u \otimes (v+w) = u \otimes v + u \otimes w \\ \circ \quad c(v \otimes u) = (cv) \otimes u = v \otimes (cu) \\ \circ \quad (u.v) = trace(u \otimes v) \ (u, v \in \mathbb{R}^{n}) \\ \circ \quad (u \otimes v)w = (v.w)u \end{array}$$

Vector Operations

- □ Vector-Vector Products:
 - Hadamard
 - Element-wise product

$$c = a \odot b = \begin{bmatrix} a_1 b_1 \\ a_2 b_2 \\ \vdots \\ a_n b_n \end{bmatrix}$$

- □ Hadamard product is used in image compression techniques such as JPEG. It is also known as Schur product
- Hadamard Product is used in LSTM (Long Short-Term Memory) cells of Recurrent Neural Networks (RNNs).

CE282: Linear Algebra

19

□ Properties:

 $a \odot b = b \odot a$

Hadamard Product Properties

- $\circ a \odot (b \odot c) = (a \odot b) \odot c$
- $a \odot (b + c) = a \odot b + a \odot c$
- $\circ (\theta a) \odot b = a \odot (\theta b) = \theta (a \odot b)$
- $a \odot \mathbf{0} = \mathbf{0} \odot a = \mathbf{0}$

Binary Operation

Definition

\Box Any function from A x A \rightarrow A is a binary operation.

□ Closure Law:

A set is said to be closure under an operation (like addition, subtraction, multiplication, etc.) if that operation is performed on elements of that set and result also lies in set.

$$if \ a \in A, b \in A \rightarrow a \ \ast b \in A$$

Binary Operations

Example

Is "+" a binary operator on natural numbers?
Is "x" a binary operator on natural numbers?
Is "-" a binary operator on natural numbers?
Is "/" a binary operator on natural numbers?

Field

Groups

Definition

- □ A group G is a pair (S, \circ) , where S is a set and \circ is a binary operation on S such that:
- is associative
- \Box (Identity) There exists an element $e \in S$ such that:

$$e \circ a = a \circ e = a \quad \forall a \in S$$

□ (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \circ b = b \circ a = e$

If \circ is commutative, then G is called a commutative group!

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Fields

Definition

□ A field F is a set together with <u>two</u> binary operations + and *, satisfying the following properties:

2. (F-{0},*) is a commutative group

3. The distributive law holds in F:

$$(a + b) * c = (a * c) + (b * c)$$

 $a * (b + c) = (a * b) + (a * c)$

Hamid R. Rabiee & Maryam Ramezani

□ A field in mathematics is a set of things of elements (not necessarily numbers) for which the basic arithmetic operations (addition, subtraction, multiplication, division) are defined: (F,+,.)

Example

(R; +, .) and (Q; +, .) serve as examples of fields.

□ Field is a set (F) with two binary operations (+ , .) satisfying following properties:

Fields t	$\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in F$	
Properties	Binary Operations	
	Addition (+)	Multiplication (.)
(بسته بودن) Closure	$\exists a + b \in F$	$\exists a. b \in F$
(شرکتپذیری) Associative	a + (b + c) = (a + b) + c	a.(b.c) = (a.b).c
Commutative (جابەجايىپذيرى)	a + b = b + a	a.b = b.a
Existence of identity e $\in F$	a + e = a = e + a	a.e = a = e.a
Existence of inverse: For each a in F there must exist b_1 in F	a+b=e=b+a	a.b = e = b.a For any nonzero a
Multiplication is distributive over addition a. (b + c) = a. b + a. c (a + b). c = a. c + b. c		

Fields

Example

Set $B = \{0,1\}$ under following operations is a field?

Fields

Example

Which are fields? (two binary operations + , *)

Vector Space

- □ Building blocks of linear algebra.
- □ A non-empty set V with field F (most of time R or C) forms a vector space with two operations:

1. + : Binary operation on V which is $V \times V \rightarrow V$ 2. . : F x V \rightarrow V

Note

In our course, by **default**, field is **R** (real numbers).

Definition

A vector space over a field F is the set V equipped with two operations: (V, F, +, .)

i. Vector addition: denoted by "+" adds two elements $x, y \in V$ to produce another element $x + y \in V$

ii. Scalar multiplication: denoted by "." multiplies a vector $x \in V$ with a scalar $\alpha \in F$ to produce another vector $\alpha . x \in V$. We usually omit the "." and simply write this vector as αx

- **Addition of vector space** (x + y)
 - **Commutative** $x + y = y + x \ \forall x, y \in V$
 - □ Associative $(x + y) + z = x + (y + z) \forall x, y, z \in V$
 - **Additive identity** $\exists \mathbf{0} \in V$ such that $x + \mathbf{0} = x, \forall x \in V$
 - □ Additive inverse $\exists (-x) \in V$ such that $x + (-x) = 0, \forall x \in V$

 \Box Action of the scalars field on the vector space (αx)

 $\Box \text{ Associative } \alpha(\beta x) = (\alpha \beta) x \qquad \forall \alpha, \beta \in F; \forall x \in V$

□ Distributive over scalar addition: $(\alpha + \beta)x = \alpha x + \beta x$ $\forall \alpha, \beta \in F; \forall x \in V$ vector addition: $\alpha(x + y) = \alpha x + \alpha y$ $\forall \alpha \in F; \forall x, y \in V$

Scalar identity 1x = x $\forall x \in V$

Example

Let V be the set of all real numbers with the operations $u \oplus v = u - v$, \oplus is an ordinary subtraction) and $c \boxdot u = cu$ (\boxdot is an ordinary multiplication). Is V a vector space? If it's not, which properties fail to hold?

Vector Space

Example: Fields are R in this example:

- The n-tuple space,
- The space of m x n matrices
- The space of functions:

(f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x)

$$f(t) = 1 + sin(2t)$$
 and $g(t) = 2 + 0.5t$

- The space of polynomial functions over a field f(x): $p_n(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n$

□ Function addition and scalar multiplication

$$(f+g)(x) = f(x) + g(x)$$
 and $(af)(x) = af(x)$

Non-empty set X and any field F $F^{x} = \{f: X \to F\}$

Example

- Set of all polynomials with real coefficients
- Set of all real-valued continuous function on [0,1]
- Set of all real-valued function that are differentiable on [0,1]

P_n (\mathbb{R}): Polynomials with max degree (n)

- □ Vector addition
- □ Scalar multiplication
- □ And other 8 properties!

Example

Which are vector spaces?

- lacksquare Set \mathbb{R}^n over \mathbb{R}
- \Box Set ${\mathbb C}$ over ${\mathbb R}$
- $\hfill\square$ Set ${\mathbb R}$ over ${\mathbb C}$
- $\hfill\square$ Set $\mathbb Z$ over $\mathbb R$
- \square Set of all polynomials with coefficient from $\mathbb R$ over $\mathbb R$
- □ Set of all polynomials of degree at most n with coefficient from \mathbb{R} over \mathbb{R} □ Matrix: $M_{m,n}(\mathbb{R})$ over \mathbb{R}
- \Box Function: $f(x): x \to \mathbb{R}$ over \mathbb{R}

The operations on field F are: $\Box + : F \times F \rightarrow F$ $\Box \times : F \times F \rightarrow F$

The operations on a vector space V over a field F are:

```
\Box + : V \times V \to V\Box : : F \times V \to V
```

Linear Combination

□ The linear combinations of m vectors $a_1, ..., a_m$, each with size n is:

$$\beta_1 a_1 + \dots + \beta_m a_m$$

where β_1, \ldots, β_m are scalars and called the coefficients of the linear combination

Coordinates: We can write any n-vector b as a linear combination of the standard unit vectors, as:

$$b = b_1 e_1 + \dots + b_n e_n$$

• Example: What are the coefficients and combination for this vector?

$$\begin{bmatrix} -1\\ 3\\ 5 \end{bmatrix}$$

Linear Combinations

Left. Two 2-vectors a_1 and a_2 . Right. The linear combination $b = 0.75a_1 + 1.5a_2$

Special Linear Combinations

- □ Sum of vectors
- □ Average of vectors

CE282: Linear Algebra

Span – Linear Hull

Definition

If $v_1, v_2, v_3, ..., v_p$ are in \mathbb{R}^n , then the set of all linear combinations of $v_1, v_2, ..., v_p$ is denoted by Span $\{v_1, v_2, ..., v_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $v_1, v_2, ..., v_p$.

That is, Span{ v_1 , v_2 , ..., v_p } is the collection of all vectors that can be written in the form:

$$c_1v_1 + c_2v_2 + \dots + c_pv_p$$

with c_1, c_2, \ldots, c_p being scalars.

Span Geometry

v and u are non-zero vectors in \mathbb{R}^3 where v is not a multiple of u

Span Geometry

(a) $\operatorname{Span}(\{\overline{A}, \overline{B}\}) = \operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\})$ $\operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\}) = \operatorname{All}$ vectors on hyperplane

(b) $\operatorname{Span}(\{\overline{A}, \overline{B}\}) \neq \operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\})$ $\operatorname{Span}(\{\overline{A}, \overline{B}, \overline{C}\}) = \operatorname{All vectors in } \mathcal{R}^3$

Figure 2.6: The span of a set of linearly dependent vectors has lower dimension than the number of vectors in the set

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Example

- □ Is vector b in Span { v_1 , v_2 , ..., v_p }
- \Box Is vector v_3 in Span $\{v_1, v_2, \dots, v_p\}$
- \Box Is vector 0 in Span { v_1 , v_2 , ..., v_p }
- □ Span of polynomials: $\{(1 + x), (1 x), x^2\}$? □ Is b in Span $\{a_1, a_2\}$?

$$a_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$, $b = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$

- Vector-Vector Operations
- □ Binary operations
- □ Field
- □ Vector space
- □ Linear combination and introduction to affine combination
- □ Span of vectors (linear hull)

- LINEAR ALGEBRA: Theory, Intuition, Code
- □ LINEAR ALGEBRA, KENNETH HOFFMAN.
- LINEAR ALGEBRA, Jim Hefferon
- David C. Lay, Linear Algebra and Its Applications
- Online Courses!
- □ Chapter 4 of Elementary Linear Algebra with Applications
- □ Chapter 3 of Applied Linear Algebra and Matrix Analysis
- https://www.math.tamu.edu/~yvorobet/MATH433-2010B/Lect2-06web.pdf